Paul Dirac

British theoretical physicist (1902–1984)

Paul Adrien Maurice Dirac (8 August 190220 October 1984) was a British engineer, theoretical physicist and a founder of the field of quantum physics.

It seems that if one is working from the point of view of getting beauty in one's equations, and if one has really a sound insight, one is on a sure line of progress.
See also: Dirac equation

Quotes edit

 
The very idea of God is a product of the human imagination.
 
Approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.
 
In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in the case of poetry, it's the exact opposite!
 
It seems clear that the present quantum mechanics is not in its final form.
 
The measure of greatness in a scientific idea is the extent to which it stimulates thought and opens up new lines of research.
 
I think it’s a peculiarity of myself that I like to play about with equations, just looking for beautiful mathematical relations which maybe don’t have any physical meaning at all. Sometimes they do.
  • If we are honest — and scientists have to be — we must admit that religion is a jumble of false assertions, with no basis in reality. The very idea of God is a product of the human imagination. It is quite understandable why primitive people, who were so much more exposed to the overpowering forces of nature than we are today, should have personified these forces in fear and trembling. But nowadays, when we understand so many natural processes, we have no need for such solutions. I can't for the life of me see how the postulate of an Almighty God helps us in any way. What I do see is that this assumption leads to such unproductive questions as why God allows so much misery and injustice, the exploitation of the poor by the rich and all the other horrors He might have prevented. If religion is still being taught, it is by no means because its ideas still convince us, but simply because some of us want to keep the lower classes quiet. Quiet people are much easier to govern than clamorous and dissatisfied ones. They are also much easier to exploit. Religion is a kind of opium that allows a nation to lull itself into wishful dreams and so forget the injustices that are being perpetrated against the people. Hence the close alliance between those two great political forces, the State and the Church. Both need the illusion that a kindly God rewards — in heaven if not on earth — all those who have not risen up against injustice, who have done their duty quietly and uncomplainingly. That is precisely why the honest assertion that God is a mere product of the human imagination is branded as the worst of all mortal sins.
    • Remarks made during the Fifth Solvay International Conference (October 1927), as quoted in Physics and Beyond: Encounters and Conversations (1971) by Werner Heisenberg, pp. 85-86; these comments prompted the famous remark later in the day by Wolfgang Pauli: "Well, our friend Dirac, too, has a religion, and its guiding principle is "God does not exist and Dirac is His prophet." Variant translations and paraphrases of that comment are listed in the "Quotes about Dirac" section below.
  • At the beginning of time the laws of Nature were probably very different from what they are now. Thus we should consider the laws of Nature as continually changing with the epoch, instead of as holding uniformly throughout space-time. This idea was first put forward by Milne, who worked it out on... assumptions... not very satisfying... we should expect them also to depend on position in space, in order to preserve the beautiful idea of the theory of relativity [that] there is fundamental similarity between space and time.
  • One possibility in this direction is to regard, classically, an electron as the end of a single Faraday line of force. The electric field in this picture from discrete Faraday lines of force, which are to be treated as physical things, like strings. One has then to develop a dynamics for such a string like structure, and quantize it.... In such a theory a bare electron would be inconceivable, since one cannot imagine the end of a piece of string without having the string.
    • Bombay Lectures (1955)
  • The aim of science is to make difficult things understandable in a simpler way; the aim of poetry is to state simple things in an incomprehensible way. The two are incompatible.
    • As quoted in Dirac: A Scientific Biography (1990), by Helge Kragh, p. 258[1]
  • In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in the case of poetry, it's the exact opposite!
    • As quoted in Brighter Than a Thousand Suns : A Personal History of the Atomic Scientists (1958) by Robert Jungk, as translated by James Cleugh, p. 22
    • Anecdotally, when Oppenheimer was working at Göttingen, Dirac supposedly came to him one day and said: "Oppenheimer, they tell me you are writing poetry. I do not see how a man can work on the frontiers of physics and write poetry at the same time. They are in opposition. In science you want to say something that nobody knew before, in words which everyone can understand. In poetry you are bound to say... something that everybody knows already in words that nobody can understand."
  • If there is no complete agreement between the results of one's work and the experiment, one should not allow oneself to be too discouraged.
    • "The Evolution of the Physicist's Picture of Nature," Scientific American (May, 1963)
  • The measure of greatness in a scientific idea is the extent to which it stimulates thought and opens up new lines of research.
  • I want to emphasize the necessity for a sound mathematical basis for any fundamental physical theory. Any philosophical ideas that one may have play only a subordinate role. Unless such ideas have a mathematical basis they will be ineffective.
    • The Mathematical Foundations of Quantum Theory (1978)
  • My research work was based in pictures. I needed to visualise things and projective geometry was often most useful e.g. in figuring out how a particular quantity transforms under Lorentz transf[ormation]. When I came to publish the results I suppressed the projective geometry as the results could be expressed more concisely in analytic form.
    • "Recollections of an Exciting Era," three lectures given at Varenna, 5 August 1972, quoted in Peter Galison, "The Suppressed Drawing: Paul Dirac's Hidden Geometry", Representations, No. 72 (Autumn, 2000)
  • It seems clear that the present quantum mechanics is not in its final form. Some further changes will be needed, just about as drastic as the changes made in passing from Bohr's orbit theory to quantum mechanics. Some day a new quantum mechanics, a relativistic one, will be discovered, in which we will not have these infinities occurring at all. It might very well be that the new quantum mechanics will have determinism in the way that Einstein wanted.
    • "The Early Years of Relativity" in Albert Einstein : Historical and Cultural Perspectives : The Centennial Symposium in Jerusalem (1979) edited by Gerald James Holton and Yehuda Elkana, p. 85
  • God used beautiful mathematics in creating the world.
    • As quoted in The Cosmic Code : Quantum Physics As The Language Of Nature (1982) by Heinz R. Pagels, p. 295; also in Paul Adrien Maurice Dirac : Reminiscences about a Great Physicist (1990) edited by Behram N. Kursunoglu and Eugene Paul Wigner, p. xv
  • A good deal of my research work in physics has consisted in not setting out to solve some particular problems, but simply examining mathematical quantities of a kind that physicists use and trying to get them together in an interesting way regardless of any application that the work may have. It is simply a search for pretty mathematics. It may turn out later that the work does have an application. Then one has had good luck.
    • P.A.M. Dirac, "Pretty Mathematics," International Journal of Theoretical Physics, Vol. 21, Issue 8–9, August 1982, p. 603
  • If you are receptive and humble, mathematics will lead you by the hand. Again and again, when I have been at a loss how to proceed, I have just had to wait until I have felt the mathematics led me by the hand. It has led me along an unexpected path, a path where new vistas open up, a path leading to new territory, where one can set up a base of operations, from which one can survey the surroundings and plan future progress.
    • As quoted in The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom (2009) by Graham Farmelo, p. 435
  • The interpretation of quantum mechanics has been dealt with by many authors, and I do not want to discuss it here. I want to deal with more fundamental things.
    • P. A. M. Dirac, The inadequacies of quantum field theory, in Paul Adrien Maurice Dirac, B. N. Kursunoglu and E. P. Wigner (Cambridge University, Cambridge, 1987) p. 194

The Principles of Quantum Mechanics (4th ed. 1958) edit

  • Classical mechanics has been developed continuously from the time of Newton and applied to an ever-widening range of dynamical systems, including the electromagnetic field in interaction with matter. The underlying ideas and the laws governing their application form a simple and elegant scheme, which one would be inclined to think could not be seriously modified without having all its attractive features spout. Nevertheless it has been found possible to set up a new scheme, called quantum mechanics, which is more suitable for the description of phenomena on the atomic scale and which is in some respects more elegant and satisfying than the classical scheme. This possibility is due to the changes which the new scheme involves being of a very profound character and not clashing with the features of the classical theory that make it so attractive, as a result of which all these features can be incorporated in the new scheme.
    • I. The Principle of Superposition - 1. The Need for a Quantum Theory
  • Causality applies only to a system which is left undisturbed. If a system is small, we cannot observe it without producing a serious disturbance and hence we cannot expect to find any causal connexion between the results of our observations. Causality will still be assumed to apply to undisturbed systems and the equations which will be set up to describe an undisturbed system will be differential equations expressing a causal connexion between conditions at one time and conditions at a later time. These equations will be in close correspondence with the equations of classical mechanics, but they will be connected only indirectly with the results of observations.
    • I. The Principle of Superposition - 1. The Need for a Quantum Theory
  •  
     

The Evolution of the Physicist's Picture of Nature (1963) edit

"The Evolution of the Physicist's Picture of Nature" in Scientific American (May 1963)
 
One could perhaps describe the situation by saying that God is a mathematician of a very high order, and He used very advanced mathematics in constructing the universe.
  • It seems that if one is working from the point of view of getting beauty in one's equations, and if one has really a sound insight, one is on a sure line of progress. If there is not complete agreement between the results of one's work and experiment, one should not allow oneself to be too discouraged, because the discrepancy may well be due to minor features that are not properly taken into account and that will get cleared up with further development of the theory.
  • It seems to be one of the fundamental features of nature that fundamental physical laws are described in terms of a mathematical theory of great beauty and power, needing quite a high standard of mathematics for one to understand it. You may wonder: Why is nature constructed along these lines? One can only answer that our present knowledge seems to show that nature is so constructed. We simply have to accept it. One could perhaps describe the situation by saying that God is a mathematician of a very high order, and He used very advanced mathematics in constructing the universe. Our feeble attempts at mathematics enable us to understand a bit of the universe, and as we proceed to develop higher and higher mathematics we can hope to understand the universe better.
  • Just by studying mathematics we can hope to make a guess at the kind of mathematics that will come into the physics of the future. A good many people are working on the mathematical basis of quantum theory, trying to understand the theory better and to make it more powerful and more beautiful. If someone can hit on the right lines along which to make this development, it may lead to a future advance in which people will first discover the equations and then, after examining them, gradually learn how to apply them.

Quotes about Dirac edit

Sorted alphabetically by author.
 
Dirac wrote the first chapter in laser optics. ~ F. J. Duarte
 
One of the most revered – and strangest – figures in the history of science. ~ Graham Farmelo
 
Well, our friend Dirac, too, has a religion, and its guiding principle is "God does not exist and Dirac is His prophet." ~ Wolfgang Pauli
  • Perhaps the most distinguished of 'why botherers has been Dirac (1963 Sci. American 208 May 45). He divided the difficulties of quantum mechanics into two classes, those of the first class and those of the second. The second-class difficulties were essentially the infinities of relativistic quantum field theory. Dirac was very disturbed by these, and was not impressed by the 'renormalisation' procedures by which they are circumvented. Dirac tried hard to eliminate these second-class difficulties, and urged others to do likewise. The first-class difficulties concerned the role of the 'observer', 'measurement', and so on. Dirac thought that these problems were not ripe for solution, and should be left for later. He expected developments in the theory which would make these problems look quite different. It would be a waste of effort to worry overmuch about them now, especially since we get along very well in practice without solving them.
    • John S. Bell, "Against 'mesurement'", Physics World (August 1990)
  • Dirac was the strangest man who ever visited my institute. […] During one of Dirac’s visits I asked him what he was doing. He replied that he was trying to take the square-root of a matrix, and I thought to myself what a strange thing for such a brilliant man to be doing. Not long afterwards the proof sheets of his article on the equation arrived, and I saw he had not even told me that he had been trying to take the square root of the unit matrix!
    • Niels Bohr, quoted in Kurt Gottfried, "P.A.M. Dirac and the Discovery of Quantum Mechanics" (2010)
  • Regardless of the prophetic value of Dirac’s description [on interference] his was probably the first discussion... including a coherent beam of light. In other words, Dirac wrote the first chapter in laser optics.
    • F. J. Duarte, in "Introduction to Lasers" in Tunable Laser Optics (2003), p. 3
  • I have trouble with Dirac. This balancing on the dizzying path between genius and madness is awful.
  • The latest and most successful creation of theoretical physics, namely Quantum Mechanics, is fundamentally different in its principles from the two programmes which we will briefly call Newton's and Maxwell's. For the quantities that appear in its laws make no claim to describe Physical Reality itself, but only the probabilities for the appearances of a particular physical reality on which our attention is fixed. Dirac, to whom, in my opinion, we owe the most logically perfect presentation of this theory, rightly points out that it appears, for example, to be by no means easy to give a theoretical description of a photon that shall contain within it the reasons that determine whether or not the photon will pass a polarizator set obliquely in its path.
  • One of the most revered – and strangest – figures in the history of science.
    • Graham Farmelo, "Prologue" in The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom (2009)
  • When I was a young man, Dirac was my hero. He made a breakthrough, a new method of doing physics. He had the courage to simply guess at the form of an equation, the equation we now call the Dirac equation, and to try to interpret it afterwards. Maxwell in his day got his equations, but only in an enormous mass of 'gear wheels' and so forth.
  • Before World War II there had been considerable theoretical effort directed towards the question of the self-energy of the electron. However, because of the war, interest had remained dormant. Now, the stimulus of results of Lamb and Retherford the latent interest developed into a major attack by theoretical physicists, and within a few years the problem was solved to the satisfaction of nearly everyone. (To the end of his life, however, Dirac maintained that any theory involving the subtraction of infinities was ugly, unsatisfactory and surely incomplete.)
  • Here we find a man with an almost miraculous apprehension of the structure of the physical world, coupled with gentle incomprehension of that less logical, messier world, the world of other people.
    • Louisa Gilder, "Quantum Leap", The New York Times, September 8, 2009
  • Dirac, in his first paper, in contrast to what his “hole”-theory implied, had identified the positively charged particle corresponding to the electron also with the proton. However, after Weyl had pointed out that Dirac’s hole theory led to equal masses, he changed his mind and gave the new particle the same mass as the electron.
  • Dirac has done more than anyone this century, with the exception of Einstein, to advance physics and change our picture of the universe. He is surely worthy of the memorial in Westminster Abbey. It is just a scandal that it has taken so long.
    • Stephen Hawking, Dirac Memorial Address, published in Paul Dirac: The Man and His Work (1998), edited by Peter Goddard
  • Es gibt keinen Gott und Dirac ist sein Prophet.
    • There is no God and Dirac is his Prophet.
    • There are many variant translations and paraphrases of this statement, which is an ironic play upon the Muslim statement of faith, the Shahada, often translated: "There is no god but Allah, and Muhammad is His Prophet.":
    • Well, our friend Dirac, too, has a religion, and its guiding principle is "God does not exist and Dirac is His prophet."
      • As quoted in the authorized translation, Physics and Beyond : Encounters and Conversations (1971) by Werner Heisenberg, p. 87
    • Yes, yes, our friend Dirac has a religion, and its creed runs: "There is no God, and Dirac is his prophet."
      • As quoted in Jesus, Son of Man (1977) by Rudolf Augstein, p. 325
    • Our friend Dirac has a religion; and the main tenet of that religion is: There is no God, and Dirac is his prophet.
      • As quoted in Haphazard Reality : Half a Century of Science (1983), by Hendrik Brugt Gerhard Casimir, p. 151
    • Yes, our friend Dirac has a religion, and the basic postulate of this religion is: "There is no God, and Dirac is his prophet."
      • As quoted in Dirac : A Scientific Biography (1990) by Helge Kragh, p. 256
    • Well, well, our friend Dirac has a religion, and its guiding principle is: "There is no God, and Dirac is His prophet.
      • As quoted in God's Laughter : Man and His Cosmos (1992) by Gerhard Staguhn, p. 159
    • If I understand Dirac correctly, his meaning is this: there is no God, and Dirac is his Prophet.


Misattributed edit

  • In the fight between you and the world, back the world.
    • Sourced to Franz Kafka, Betrachtungen (Reflections), Number 52, ca. 1917. See, for instance, Reflections on Sin, Suffering, Hope, and the True Way.

References edit

  1. Kragh, Helge (March 30, 1990). Dirac: A Scientific Biography. p. 258. Retrieved on December 6, 2017. 

External links edit

 
Wikipedia
Wikipedia has an article about:
 
Commons
Wikimedia Commons has media related to: