# Renormalization

process of assuring meaningful mathematical results in quantum field theory and related disciplines

In quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, **renormalization** is any of a collection of techniques used to treat infinities arising in calculated quantities.

This science article is a stub. You can help Wikiquote by expanding it. |

## QuotesEdit

- Hence most physicists are very satisfied with the situation. They say: "Quantum electrodynamics is a good theory, and we do not have to worry about it any more." I must say that I am very dissatisfied with the situation, because this so-called "good theory" does involve neglecting infinities which appear in its equations, neglecting them in an arbitrary way. This is just not sensible mathematics. Sensible mathematics involves neglecting a quantity when it turns out to be small—not neglecting it just because it is infinitely great and you do not want it!
- P. A. M. Dirac,
*Directions in Physics*(1978), 2. Quantum Electrodynamics

- P. A. M. Dirac,

- So it appears that the only things that depend on the small distances between coupling points are the values for n and j-theoretical numbers that are not directly obseroable any- way; everything else, which can be observed, seems not to be affected. The shell game that we play to find n and j is technically called "renormalization." But no matter how clever the word, it is what I would call a dippy process! Having to resort to such hocus-pocus has prevented us from proving that the theory of quantum electrodynamics is mathematically self-consistent. It's surprising that the theory still hasn't been proved self-consistent one way or the other by now; I suspect that renormalization is not mathematically legitimate. What is certain is that we do not have a good mathematical way to describe the theory of quantum electrodynamics: such a bunch of words to describe the connection between n and j and m and e is not good mathematics.
- Richard Feynman,
*QED: The Strange Theory of Light and Matter*(1985), Chap. 4. Loose Ends

- Richard Feynman,

- During the Symposium on the Past Decade in Particle Theory at the University of Texas at Austin in April 1970, I had occasion to bring Dirac and Feynman together for a discussion at dinner. Dirac told Feynman that the relativistic quantum electrodynamics in its present form was an ugly theory, and before tackling the more difficult problems of elementary particle physics 'one must try to solve the problems of quantum electrodynamics. Electrodynamics is something we know most about, and we must find a consistent theory of it rather than get rid of the infinities in an arbitrary manner.' Feynman agreed with Dirac.
- Jagdish Mehra,
*The Beat of a Different Drum*(1994), Introduction

- Jagdish Mehra,

- After such successes, it is not surprising that quantum electrodynamics in its simple renormalizable version has become generally accepted as the correct theory of photons and electrons. Nevertheless, despite the experimental success of the theory, and even though the infinities in this theory all cancel when one handles them correctly, the fact that the infinities occur at all continues to produce grumbling about quantum electrodynamics and similar theories. Dirac in particular always referred to renormalization as sweeping the infinities under the rug. I disagreed with Dirac and argued the point with him at conferences at Coral Gables and Lake Constance. Taking account of the difference between the bare charge and mass of the electron and their measured values is not merely a trick that is invented to get rid of infinities; it is something we would have to do even if everything was finite. There is nothing arbitrary or ad hoc about the procedure; it is simply a matter of correctly identifying what we are actually measuring in laboratory measurements of the electron’s mass and charge. I did not see what was so terrible about an infinity in the bare mass and charge as long as the final answers for physical quantities turn out to be finite and unambiguous and in agreement with experiment. It seemed to me that a theory that is as spectacularly successful as quantum electrodynamics has to be more or less correct, although we may not be formulating it in just the right way. But Dirac was unmoved by these arguments. I do not agree with his attitude toward quantum electrodynamics, but I do not think that he was just being stubborn; the demand for a completely finite theory is similar to a host of other aesthetic judgments that theoretical physicists always need to make.
- Steven Weinberg,
*Dreams of a Final Theory*(1992), Chap. 5 : Tales of Theory and Experiment

- Steven Weinberg,