**Roger Joseph Boscovich** (18 May 1711 – 13 February 1787) was a physicist, astronomer, mathematician, philosopher, diplomat, poet, and Jesuit.

This article about a physicist is a stub. You can help Wikiquote by expanding it. |

## QuotesEdit

- But if some mind very different from ours were to look upon some property of some curved line as we do on the evenness of a straight line, he would not recognize as such the evenness of a straight line; nor would he arrange the elements of his geometry according to that very different system, and would investigate quite other relationships as I have suggested in my notes.

We fashion our geometry on the properties of a straight line because that seems to us to be the simplest of all. But really all lines that are continuous and of a uniform nature are just as simple as one another. Another kind of mind which might form an equally clear mental perception of some property of any one of these curves, as we do of the congruence of a straight line, might believe these curves to be the simplest of all, and from that property of these curves build up the elements of a very different geometry, referring all other curves to that one, just as we compare them to a straight line. Indeed, these minds, if they noticed and formed an extremely clear perception of some property of, say, the parabola, would not seek, as our geometers do, to*rectify*the parabola, they would endeavor, if one may coin the expression, to*parabolify*the straight line.- "Boscovich's mathematics", an article by J. F. Scott, in the book
*Roger Joseph Boscovich*(1961) edited by Lancelot Law Whyte. - "Transient pressure analysis in composite reservoirs" (1982) by Raymond W. K. Tang and William E. Brigham.
- "Non-Newtonian Calculus" (1972) by Michael Grossman and Robert Katz.

- "Boscovich's mathematics", an article by J. F. Scott, in the book

## Quotes of others about BoscovichEdit

- In 1763 a Croatian Jesuit named Roger Joseph Boscovich (1711 - 1787) identified the ultimate implication of this mechanical atomic theory. One of the crucial aspects of Isaac Newton's laws of motion is their predictive capability. If we know how an object is moving at any instant - how fast, and in which direction - and if, furthermore, we know the forces acting on it, we can calculate its future trajectory exactly. This predictability made it possible for astronomers to use Newton's laws of motion and gravity to calculate, for example, when future solar eclipses would happen.

Boscovich realized that if all the world is just atoms in motion and collision, then an all-seeing mind "could, from a continuous arc described in an interval of time, no matter how small, by all points of matter, derive the law [that is, a universal map] of forces itself … Now, if the law of forces were known, and the position, velocity and direction of all the points at any given instant, it would be possible for a mind of this type to foresee all the necessary subsequent motions and states, and to predict all the phenomena that necessarily followed from them."*Critical Mass: How One Thing Leads to Another*(2006) by Philip Ball.