Reductionism

philosophical view explaining systems in terms of smaller parts
(Redirected from Reductionist)

Reductionism refers to several related but different philosophical positions regarding the connections between phenomena, or theories, "reducing" one to another, usually considered "simpler" or more "basic".

Descartes held that non-human animals could be reductively explained as automata.

Quotes

edit
  • When hydrogen and oxygen are mixed in a certain proportion, and an electric spark is passed through them, they disappear, and a quantity of water, equal in weight to the sum of their weights, appears in their place. There is not the slightest parity between the passive and active powers of the water and those of the oxygen and hydrogen which have given rise to it... Nevertheless we call these, and many other strange phænomena, the properties of the water, and we do not hesitate to believe that, in some way or another, they result from the properties of the component elements of the water. We do not assume that a something called "aquosity" entered into and took possession of the oxide of hydrogen as soon as it was formed, and then guided the aqueous particles to their places in the facets of the crystal, or amongst the leaflets of the hoar-frost... What justification is there, then, for the assumption of the existence in the living matter of a something which has no representative, or correlative, in the not living matter which gave rise to it? What better philosophical status has "vitality" than "aquosity"?
  • Reports of the death of reductionism are greatly exaggerated. It is so ingrained in our thinking that if one day some magical force should make us all forget it, we would promptly have to reinvent it. The real worry is not with reductionism, which, as a paradigm and tool, is rather useful. It is necessary, but no longer sufficient. But, weighing up better ideas, it became a burden.
  • There have been a number of attempts to show that reductionism cannot work. They usually take the form of a rather formal definition, followed by an argument that reductionism of this type cannot be true. What is ignored is that reductionism is not the rigid process of explaining one fixed set of ideas in terms of another fixed set of ideas at a lower level, but a dynamic interactive process that modifies the concept at both levels as knowledge developments. After all, "reductionism" is the main theoretical method that has driven the development of physics, chemistry, and molecular biology. It is largely responsible for the spectacular developments of modern science. It is the only sensible way to proceed until and unless we are confronted with strong experimental evidence that demands we modify our attitude. General philosophical arguments against reductionism will not do.
  • The traditional, scientific method for studying such systems is known as reductionism. Reductionism sees the parts as paramount and seeks to identify the parts, understand the parts and work up from an understanding of the parts to an understanding of the whole. The problem with this is that the whole often seems to take on a form that is not recognizable from the parts. The whole emerges from the interactions between the parts, which affect each other through complex networks of relationships. Once it has emerged, it is the whole that seems to give meaning to the parts and their interactions. A living organism gives meaning to the heart, liver and lungs; a family to the roles of husband, wife, son, daughter
  • Ever since the Industrial Revolution, Western society has benefited from science, logic, and reductionism over intuition and holism. Psychologically and politically we would much rather assume that the cause of a problem is “out there,” rather than “in here.” It’s almost irresistible to blame something or someone else, to shift responsibility away from ourselves, and to look for the control knob, the product, the pill, the technical fix that will make a problem go away.
    Serious problems have been solved by focusing on external agents — preventing smallpox, increasing food production, moving large weights and many people rapidly over long distances. Because they are embedded in larger systems, however, some of our “solutions” have created further problems. And some problems, those most rooted in the internal structure of complex systems, the real messes, have refused to go away.
    Hunger, poverty, environmental degradation, economic instability, unemployment, chronic disease, drug addiction, and war, for example, persist in spite of the analytical ability and technical brilliance that have been directed toward eradicating them. No one deliberately creates those problems, no one wants them to persist, but they persist nonetheless.
    That is because they are intrinsically systems problems-undesirable behaviors characteristic of the system structures that produce them. They will yield only as we reclaim our intuition, stop casting blame, see the system as the source of its own problems, and find the courage and wisdom to restructure it.
  • Simple rules can have complex consequences. This simple rule has such a wealth of implications that it is worth examining in detail. It is the far from self-evident guiding principle of reductionism and of most modern investigations into cosmic complexity. Reductionism will not be truly successful until physicists and cosmologists demonstrate that the large-scale phenomena of the world arise from fundamental physics alone. This lofty goal is still out of reach. There is uncertainty not only in how physics generates the structures of our world but also in what the truly fundamental rules of physics are.
  • The reductionist worldview is chilling and impersonal. It has to be accepted as it is, not because we like it, but because that is the way the world works.
  • The basic thesis of gestalt theory might be formulated thus: there are contexts in which what is happening in the whole cannot be deduced from the characteristics of the separate pieces, but conversely; what happens to a part of the whole is, in clear-cut cases, determined by the laws of the inner structure of its whole.
    • Max Wertheimer (1920/45), Productive thinking. Harper & Row Publishers. p. 84

See also

edit
Philosophy of science
Concepts AnalysisA priori and a posterioriCausalityDemarcation problemFactInductive reasoningInquiryNatureObjectivityObservationParadigmProblem of inductionScientific methodScientific revolutionScientific theory
Related topics AlchemyEpistemologyHistory of scienceLogicMetaphysicsPseudoscienceRelationship between religion and scienceSociology of scientific knowledge
Philosophers of science PlatoAristotleStoicism
AverroesAvicennaRoger BaconWilliam of Ockham
Francis BaconThomas HobbesRené DescartesGalileo GalileiPierre GassendiIsaac NewtonDavid Hume
Immanuel KantFriedrich SchellingWilliam WhewellAuguste ComteJohn Stuart MillHerbert SpencerWilhelm WundtCharles Sanders PeirceHenri PoincaréPierre DuhemRudolf SteinerKarl Pearson
Alfred North WhiteheadBertrand RussellAlbert EinsteinOtto NeurathC. D. BroadMichael PolanyiHans ReichenbachRudolf CarnapKarl PopperW. V. O. QuineThomas KuhnImre LakatosPaul FeyerabendJürgen HabermasIan HackingBas van FraassenLarry LaudanDaniel Dennett
edit
 
Wikipedia
Wikipedia has an article about: