Photoelectric effect

emission of electrons when light hits a material

The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid state and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

A diagram of illustrating the photoelectric effect


  • In contemplating the papers Einstein wrote in 1905, I often find myself wondering which of them is the most beautiful. It is a little like asking which of Beethoven’s symphonies is the most beautiful. My favorite, after years of studying them, is Einstein’s paper on the blackbody radiation. [...] Part of being a great scientist is to know—have an instinct for—the questions not to ask. Einstein did not try to derive the Wien law. He simply accepted it as an empirical fact and asked what it meant. By a virtuoso bit of reasoning involving statistical mechanics (of which he was a master, having independently invented the subject over a three-year period beginning in 1902), he was able to show that the statistical mechanics of the radiation in the cavity was mathematically the same as that of a dilute gas of particles. As far as Einstein was concerned, this meant that this radiation was a dilute gas of particles—light quanta. But, and this was also characteristic, he took the argument a step further. He realized that if the energetic light quanta were to bombard, say, a metal surface, they would give up their energies in lump sums and thereby liberate electrons from the surface in a predictable way, something that is called the photoelectric effect. [...] In the first place, not many physicists were even interested in the subject of blackbody radiation for at least another decade. Kuhn has done a study that shows that until 1914 less than twenty authors a year published papers on the subject; in most years there were less than ten. Planck, who was interested, decided that Einstein’s paper was simply wrong.

External linksEdit

Wikipedia has an article about: