Last modified on 15 October 2014, at 17:48

James Clerk Maxwell

I hope that you will not tell me you have little fault to find with me, without finding that little and communicating it.

James Clerk Maxwell (13 June 18315 November 1879) was a Scottish mathematical physicist, who formulated the classical theory of electromagnetic radiation, bringing together for the first time electricity, magnetism, and light as manifestations of the same phenomenon.

See also: Matter and Motion & The Scientific Papers of James Clerk Maxwell

QuotesEdit

The history of science shews that even during the phase of her progress in which she devotes herself to improving the accuracy of the numerical measurement of quantities with which she has long been familiar, she is preparing the materials for the subjugation of the new regions, which would have remained unknown if she had been contented with the rough methods of her early pioneers.
  • And last of all we have the secondary forms of crystals bursting in upon us, and sparkling in the rigidity of mathematical necessity and telling us, neither of harmony of design, usefulness or moral significance, — nothing but spherical trigonometry and Napier's analogies. It is because we have blindly excluded the lessons of these angular bodies from the domain of human knowledge that we are still in doubt about the great doctrine that the only laws of matter are those which our minds must fabricate, and the only laws of mind are fabricated for it by matter.
    • Essay "Analogies in Nature" (February 1856), reprinted in The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862 edited by P.M. Harman, p. 376 (the quote appears on p. 383)
  • The general equations are next applied to the case of a magnetic disturbance propagated through a non-conductive field, and it is shown that the only disturbances which can be so propagated are those which are transverse to the direction of propagation, and that the velocity of propagation is the velocity v, found from experiments such as those of Weber, which expresses the number of electrostatic units of electricity which are contained in one electromagnetic unit. This velocity is so nearly that of light, that it seems we have strong reason to conclude that light itself (including radiant heat, and other radiations if any) is an electromagnetic disturbance in the form of waves propagated through the electromagnetic field according to electromagnetic laws.
  • This characteristic of modern experiments — that they consist principally of measurements — is so prominent, that the opinion seems to have got abroad, that in a few years all the great physical constants will have been approximately estimated, and that the only occupation which will then be left to men of science will be to carry on these measurements to another place of decimals. If this is really the state of things to which we are approaching, our Laboratory may perhaps become celebrated as a place of conscientious labour and consummate skill, but it will be out of place in the University, and ought rather to be classed with the other great workshops of our country, where equal ability is directed to more useful ends.
    But we have no right to think thus of the unsearchable riches of creation, or of the untried fertility of those fresh minds into which these riches will continue to be poured. It may possibly be true that, in some of those fields of discovery which lie open to such rough observations as can be made without artificial methods, the great explorers of former times have appropriated most of what is valuable, and that the gleanings which remain are sought after, rather for their abstruseness, than for their intrinsic worth. But the history of science shews that even during the phase of her progress in which she devotes herself to improving the accuracy of the numerical measurement of quantities with which she has long been familiar, she is preparing the materials for the subjugation of the new regions, which would have remained unknown if she had been contented with the rough methods of her early pioneers. I might bring forward instances gathered from every branch of science, shewing how the labour of careful measurement has been rewarded by the discovery of new fields of research, and by the development of new scientific ideas. But the history of the science of terrestrial magnetism affords us a sufficient example of what may be done by experiments in concert, such as we hope some day to perform in our Laboratory.
    • Introductory Lecture on Experimental Physics held at Cambridge in October 1871, re-edited by W. D. Niven (2003) in Volume 2 of The Scientific Papers of James Clerk Maxwell, Courier Dover Publications, p. 241; this has sometimes been misquoted in a way which considerably alters its intent: "in a few years, all the great physical constants will have been approximately estimated, and … the only occupation which will then be left to the men of science will be to carry these measurement to another place of decimals."
  • We may find illustrations of the highest doctrines of science in games and gymnastics, in travelling by land and by water, in storms of the air and of the sea, and wherever there is matter in motion.
    • Introductory Lecture on Experimental Physics held at Cambridge in October 1871, re-edited by W. D. Niven (2003) in Volume 2 of The Scientific Papers of James Clerk Maxwell, Courier Dover Publications, p. 243.
  • The whole science of heat is founded Thermometry and Calorimetry, and when these operations are understood we may proceed to the third step, which is the investigation of those relations between the thermal and the mechanical properties of substances which form the subject of Thermodynamics. The whole of this part of the subject depends on the consideration of the Intrinsic Energy of a system of bodies, as depending on the temperature and physical state, as well as the form, motion, and relative position of these bodies. Of this energy, however, only a part is available for the purpose of producing mechanical work, and though the energy itself is indestructible, the available part is liable to diminution by the action of certain natural processes, such as conduction and radiation of heat, friction, and viscosity. These processes, by which energy is rendered unavailable as a source of work, are classed together under the name of the Dissipation of Energy.
  • It is of great advantage to the student of any subject to read the original memoirs on that subject, for science is always most completely assimilated when it is in the nascent state...
  • We shall see that the mathematical treatment of the subject [of electricity] has been greatly developed by writers who express themselves in terms of the 'Two Fluids' theory. Their results, however, have been deduced entirely from data which can be proved by experiment, and which must therefore be true, whether we adopt the theory of two fluids or not. The experimental verification of the mathematical results therefore is no evidence for or against the peculiar doctrines of this theory.
  • Colour as perceived by us is a function of three independent variables at least three are I think sufficient, but time will show if I thrive.
    • Maxwell, in a letter to William Thomson, The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862 (1990), p. 245.
  • The 2nd law of thermodynamics has the same degree of truth as the statement that if you throw a tumblerful of water into the sea, you cannot get the same tumblerful of water out again.
  • Aye, I suppose I could stay up that late.
    • Maxwell, on being told on his arrival at Cambridge University that there would be a compulsory 6 a.m. church service, as quoted in Spice in Science : The Best of Science Funnies (2006) by K. Krishna Murty
  • The equations at which we arrive must be such that a person of any nation, by substituting the numerical values of the quantities as measured by his own national units, would obtain a true result.
    • Encyclopedia Brittanica article, quoted by Patricia Fara in Science A Four Thousand Year History (2009) citing Simon Schaffer article in The Values of Precision (1995) ed. M. Norton Wise

The Life of James Clerk Maxwell (1882)Edit

Happiness and Misery must inevitably increase with increasing Power and Knowledge ... the translation from the one course to the other is essentially miraculous, while the progress is natural.
In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data.
Quotations from The Life of James Clerk Maxwell (1882)] by Lewis Campbell and William Garnett, Full text online.
  • I believe, with the Westminster Divines and their predecessors ad Infinitum that "Man's chief end is to glorify God and to enjoy him for ever."
    That for this end to every man has been given a progressively increasing power of communication with other creatures.
    That with his powers his susceptibilities increase. That happiness is indissolubly connected with the full exercise of these powers in their intended direction. That Happiness and Misery must inevitably increase with increasing Power and Knowledge. That the translation from the one course to the other is essentially miraculous, while the progress is natural. But the subject is too high. I will not, however, stop short, but proceed to Intellectual Pursuits.
    • Letter to Lewis Campbell (9 November 1851) in Ch. 6 : Undergraduate Life At Cambridge October 1850 to January 1854 — ÆT. 19-22, p.158
  • In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data.
    • Letter to Lewis Campbell (9 November 1851) in Ch. 6 : Undergraduate Life At Cambridge October 1850 to January 1854 — ÆT. 19-22, p.159
  • I have the capacity of being more wicked than any example that man could set me, and that if I escape, it is only by God's grace helping me to get rid of myself, partially in science, more completely in society, — but not perfectly except by committing myself to God as the instrument of His will, not doubtfully, but in the certain hope that that Will will be plain enough at the proper time. Nevertheless, you see things from the outside directly, and I only by reflexion, so I hope that you will not tell me you have little fault to find with me, without finding that little and communicating it.
    • Letter to Rev. C. B. Tayler ( 8 July 1853) in Ch. 6 : Undergraduate Life At Cambridge October 1850 to January 1854 — ÆT. 19-22, p. 189
  • I think men of science as well as other men need to learn from Christ, and I think Christians whose minds are scientific are bound to study science that their view of the glory of God may be as extensive as their being is capable. But I think that the results which each man arrives at in his attempts to harmonize his science with his Christianity ought not to be regarded as having any significance except to the man himself, and to him only for a time, and should not receive the stamp of a society.
    • Draft of a reply to an invitation to join the Victoria Institute (1875), in Ch. 12 : Cambridge 1871 To 1879, p. 404
  • How the learned fool would wonder
    Were he now to see his blunder,
    When he put his reason under
                   The control of worldly Pride.
    • Part III Poems, "A Vision Of a Wrangler, of a University, of Pedantry, and of Philosophy. " (November 10, 1852)
  • By the hollow mauntain-side
       Questions strange I shout for ever,
    While echoes far and wide
       Seem to mock my vain endeavour;
       Still I shout, for though they never
    Cast my borrowed voice aside,
       Words from empty words they sever—
    Words of Truth from words of Pride.
    • Part III Poems, "Reflection from Various Surfaces" (April 18, 1853)
  • Ask no more, then, "what is best,
    How shall those you love be blest,"
    Ask at once eternal Rest,
         Peace and assurance giving.
    Rest of Life and not of death,
    Rest in Love and Hope and Faith,
    Til the God who gives their breath
         Calls them to rest from living.
    • Part III Poems, "On St. David's Day. To Mrs. E. C. Morrieson." (March 1, 1854)
  • But listen, what harmony holy
       Is mingling its notes with our own!
    The discord is vanishing slowly,
       And melts in that dominant tone.
    And they that have heard it can never
       Return to confusion again,
    Their voices are music for ever,
       And join in the mystical strain.
    • Part III Poems, To the Air of "Lörelei." (January, 1858)
  • The world may be utterly crazy
       And life may be labour in vain;
    But I'd rather be silly than lazy,
       And would not quit life for its pain.
    • Part III Poems, Tune, Il Segreto per esser felice (March 24, 1858)

Quotes about MaxwellEdit

If the idea of physical reality had ceased to be purely atomic, it still remained for the time being purely mechanistic; people still tried to explain all events as the motion of inert masses; indeed no other way of looking at things seemed conceivable. Then came the great change, which will be associated for all time with the names of Faraday, Clerk Maxwell, and Hertz. ~ Albert Einstein
From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics. ~ Richard Feynman
  • If the idea of physical reality had ceased to be purely atomic, it still remained for the time being purely mechanistic; people still tried to explain all events as the motion of inert masses; indeed no other way of looking at things seemed conceivable. Then came the great change, which will be associated for all time with the names of Faraday, Clerk Maxwell, and Hertz. The lion's share in this revolution fell to Clerk Maxwell. He showed that the whole of what was then known about light and electro-magnetic phenomena was expressed in his well known double system of differential equations, in which the electric and magnetic fields appear as the dependent variables. Maxwell did, indeed try to explain, or justify, these equations by intellectual constructions. But... the equations alone appeared as the essential thing and the strength of the fields as the ultimate entities, not to be reduced to anything else.
    • Albert Einstein, "Clerk Maxwell's Influence on the Evolution of the Idea of Physical Reality" in Essays in Science (1934)
  • The special theory of relativity owes its origins to Maxwell's equations of the electromagnetic field.
    • Albert Einstein, as quoted in New Scientist, Vol. 130 (1991), p. 49
  • From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same decade.
  • What does distinguish Maxwell to a great degree is a strong intuition, rising at times to divination, which goes hand in hand with rich power of imagination. For the latter quality much evidence can be cited: his predilection for diagrams, his use of roll-curves [Rollkui'Ven], of stereoscopic figures, of reciprocal force-planes [Kraefteplaenen].
    • Felix Klein, in Development of Mathematics in the 19th Century, Volume 9, pg. 229
  • Maxwell's equations have had a greater impact on human history than any ten presidents.
  • Maxwell's importance in the history of scientific thought is comparable to Einstein's (whom he inspired) and to Newton's (whose influence he curtailed)
  • Changing electric fields produce magnetic fields, and changing magnetic fields produce electric fields. Thus the fields can animate one another in turn, giving birth to self-reproducing disturbances that travel at the speed of light. Ever since Maxwell, we understand that these disturbances are what light is.

External linksEdit

Wikipedia
Wikipedia has an article about:
Wikisource
Wikisource has original text related to:
Commons
Wikimedia Commons has media related to: